

Asian Journal of Research in Chemistry and Pharmaceutical Sciences

Journal home page: www.ajrcps.com https://doi.org/10.36673/AJRCPS.2023.v11.i04.A20

ONE POT MULTICOMPONENT SYNTHESIS OF A SERIES OF 5-AMINO-3-PHENYLISOXAZOLE-4-CARBONITRILE EMPLOYED BY LEWS ACID CATALYST

Krishnarao*¹ and K. Sirisha¹

^{1*}Department of Organic Chemistry, PRISM PG and DG College (Affiliated to Andhra University), Visakhapatnam, India.

ABSTRACT

In the present study and followed by conventional method, an efficient and design synthesis a novel series of 5amino-3-phenylisoxazole-4-carbonitrile derivatives. These derivatives can be obtained by substituted aromatic aldehyde, malononitrile and hydroxylamine hydrochloride in presence of Lews acid catalyst ceric ammonium sulphate in isopropyl alcohol as a solvent at reflux. All the titled analogous were evaluated by the advanced spectroscopic analysis such as ¹HNMR, ¹³CNMR and LCMS and structural determination of titled analogous were calculated by elemental analysis. In addition to the newly synthesized compounds were examined by their antimicrobial activity.

KEYWORDS

Malanonitrile, Hydroxylamine hydrochloride, Aromatic aldehyde, 5-amino-3-phenylisoxazole-4-carbonitrile, CAS and Bioevluation.

Author for Correspondence:

Krishnarao N,

Department of Organic Chemistry,

PRISM PG and DG College (Affiliated to Andhra

University), Visakhapatnam, Andhra Pradesh, India.

Email: naallakrishnarao@gmail.com

 $\label{eq:available} Available \ on line: www.uptodate research publication.com$

INTRODUCTON

Isoxazoles are five-membered aromatic heterocycles containing adjacent oxygen and nitrogen atoms. The isoxazole ring system is found in a variety of naturally occurring compounds and biologically active molecules¹. They are especially useful in medicine, since many antifungal drugs belong to the isoxazole class². Sulfisoxazole and sulfamethoxazole bacteriostatic are two sulfonamide antibiotics that applied alone or combined with others in the treatment of infections caused Gram-positive and Gram-negative bacteria^{3,4}. Acivicin is a γ -glutamyl transferase inhibitor with anticancer, anti-parasitic and antileishmanial activities⁵. Isoxazole derivatives

October – December

147

possess a broad variety of biological activities viz. antifungal, anti-inflammatory, antiplatelet, anti-HIV, anti-Alzheimer and analgesic⁶⁻¹¹.

In order to develop applications of ceric ammonium sulphate other heterocycles, it was successfully used as catalytic media in the synthesis of novel 5amino-isoxazole-4-carboni-trile derivatives via multicomponent reaction of malononitrile, hydroxylamine and various aryl aldehydes In vitro inhibitory activity of all derivatives was evaluated against some pathogenic bacteria including.

MATERIAL AND METHODS Experimental

All reagents, solvents, antibiotics, and antifungal agents were purchased from commercial sources such Merck, Sigma and Aldrich and used without further purification. The bacterial and fungal culture media were obtained from (HI Media). The melting points desired analogous were determined with Aggarwal melting point meter and are uncorrected. The reaction progress was identified by TLC plates precoated by SiO₂ with fluorescent indicator F254 using EtOAc/n-hexane (4:6) as mobile phase that were visualized under UV radiation (255 nm). . FT-IR spectra of the products were collected using a Bruker Tensor-27 FT-IR spectrometer. ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively, on a Bruker FT-NMR Ultra Shield-400 spectrometer. Elemental analyses (CHNS/O) were performed on a Thermo Finnigan Flash EA micro analyzer.

General procedure for the synthesis of5-amino-3-phenylisoxazole-4-carbonitrile (4a-4i)

A mixture of malononitrile (1), substituted aromatic aldehydes (2) and hydroxylamine hydrochloride (3) is dissolved in 25mL isopropyl alcohol in a 50mL RBF and gradually addition of Lews acid catalyst such as ceric ammonium catalyst (2mmol), during the reaction and continued the reaction 5 hrs. The progress of the reaction was examined with help of TLC (as a mobile system = EtOAc: n-hexane -4:6). The completion of the reaction poured in cold water and neutralized with a solution of NaHCO₃ and extracted with ethylacetae and separated the organic

Available online: www.uptodateresearchpublication.com

layer. The organic layer was distilled with vacuum distillation and obtained by product.

5-amino-3-phenylisoxazole-4-carbonitrile (4a)

Pale orange red; Yield: 84%; M.P : 154–156°C; IR (KBr, cm⁻¹) v: 3512, 3405, 3341, 2223, 1615, 1267; ¹H NMR (400 MHz, CDCl3) δ ppm: 7.124 (d, J = 8.8 Hz, 2H, Ar-H), 7.884 (d, J = 7.6 Hz, 2H, Ar-H), 8.224 (s, 2H, NH₂); 13C NMR (100 MHz, CDCl₃) δ ppm: 76.07, 113.36, 116.78, 119.08, 125.66, 132.35, 162.18, 166.98; Molecular weight(m/z): 185.28(M+); Molecular formulae C10H7N₃O: Analysis of elements: Calculated: C-64.86, H- 3.81, N- 22.69. Obtained: C- 64.80, H -3.79, N- 22.75.

5-Amino-3-(4-hydroxyphenyl) isoxazole-4carbonitrile (4b)

Pale orange red; Yield: - 92%; M.P- 165–1167°C; IR (KBr, cm-1) v: 3515, 3414, 3318, 2234, 1618, 1265; ¹HNMR (400 MHz, CDCl₃) δ ppm: 7.128 (d, J=9.2Hz, 2H, Ar-H), 7.687(d, J=6.8 Hz, 2H, Ar=H'), 8.147 (s, 2H, NH₂), 9.985 (s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 77.66, 114.87, 117.08, 118.58, 124.55, 136.21, 159.95, 165.47; Molecular weight(m/z); 201.47 (M+); Molecular formulae: C₁₀H₇N₃O₂: Analysis of elements: Calculated: C-59.70, H-3.51, N -20.89. Obtained: C -59.63, H-3.50, N-20.96.

5-Amino-3-(2-hydroxy-3-methoxyphenyl) isoxazole-4-carbonitrile (4c)

Pale orange red; Yield- 88%; M.P- 228–230°C; IR (KBr, cm-1) v: 3502, 3412, 3340, 2213, 1604, 1285; 1H NMR (400 MHz, CDCl3) δppm: 2.254 (s, 3H, CH3), 7.277–7.394 (m, 3H, Ar-H), 8.138 (s, 2H, NH2), 9.147 (s, 1H, OH); 13C NMR (100 MHz, CDCl3) δppm: 56.15, 103.57, 115.58, 117.27, 118.78, 122.58, 125.28, 144.74, 147.65, 154.47, 158.58; Molecular weight (m/z): 232.14 (M+H); Molecular formulae: C11H9N3O3: Analysis of elements: Calculated C- 57.14, H- 3.92, N -18.17. Obtained: C -57.08, H- 3.90, N 18.25.

5-Amino-3-(4-tolyl) isoxazole-4-carbonitrile (4d) Pale orange red; Yield: 89%; M.P: 174–176°C; IR (KBr,cm-1) v: 3417, 3327, 2228, 1603, 1218; 1H NMR (400 MHz, CDC13) δ ppm: 2.258 (s, 3H, CH₃), 7.327(d, J=7.6 Hz, 2H, Ar-H), 7.82 (d, J=7.2 Hz, 2H, Ar-H '), 8.248 (s, 2H, NH₂); 13C October – December 148 NMR (100 MHz, CDCl₃) δ ppm: 21.23 , 81.03, 114.07, 115.85, 128.98, 130.44, 132.12, 147.85, 162.65; Molecular weight(m/z); 166.32 (M+H); Molecular formulae: C₁₁H₉N₃O: Analysis of elements: Calculated: C-66.32, H- 4.55, N-21.09. Obtained: C- 66.27, H- 4.53, N 21.16

5-Amino-3-(2, 4-dichlorophenyl) isoxazole-4carbonitrile (4e)

Pale orange red; Yield-90%; M.P-171–173°C; IR (KBr, cm-1) v: 3428, 3345, 2218, 1649, 1288; 1H NMR (400 MHz, CDCl₃) δ ppm: 7.589 (m, 1H, Ar-H), 7.846 (s, 1H, Ar-H), 8.118 (d, J=8.5Hz, 1H, Ar-H), 8.258 (s, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 87.44, 113.07, 127.88, 128.76, 129.19, 130.17, 132.08, 139.16, 145.87, 157.66; Molecular weight (m/z); 254.58 (M+H); Molecular formulae; C₁₀H₅Cl₂N₃O: Analysis of elements: Calculated: C -42.27, H-1.98, N-16. 54. Obtained: C -42.20, H- 1.96, N-16.62.

5-Amino-3-(4-nitrophenyl) isoxazole-4carbonitrile (4f)

Pale orange red; Yield-83%; M.P-225-227°C; IR (KBr,cm-1) v: 3419, 3372, 2226, 1604, 1539, 1363, 1286; 1H NMR (400 MHz, CDCl₃) δ ppm: 7.892 (d, J = 9.2 Hz, 2H, Ar-H), 8.132 (s, 2H, Ar-H), 8.254 (m, 4H, NH₂); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 80.28, 116.47, 124.21, 128.47, 136.17, 147.65, 148.44, 153.64; Molecular weight (m/z): 231.54 (M+); Molecular formulae: C₁₀H₆N₄O₃: Calculated: C-52.18, H- 2.63, N-24.34. Obtained: C- 52.12, H- 2.59, N- 24.37.

5-Amino-3-(furan-2-yl) isoxazole-4-carbonitrile (4g):

Pale orange red; Yield- 85%; M.P: 241–243°C; IR (KBr, cm-1) v: 3420, 3364, 2217, 1604, 1286; ¹H NMR (400 MHz, CDCl₃) δ ppm: 6.874 (m, 1H, furyl), 7.123-7.214 (m, 1H, furyl), 8.012 -8.217 (m, 1H, furyl), 8.234 (s, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 76.55, 110.91, 114.27, 117.05, 135.66, 147.24, 153.54, 162.87; Molecular weight(m/z): 174.22 (M+H); Molecular formulae: C8H6N4O: Analysis of elements: Calculated: C -55.17, H- 3.47, N- 32.17. Obtained: C -55.10, H-3.46, N- 32.22.

Available online: www.uptodateresearchpublication.com

5-Amino-3-(thiophen-2-yl) isoxazole-4carbonitrile (4h)

Orange red; Yield- 85%; M.P- 204–206°C: IR (KBr, cm⁻¹) v: 3425, 3363, 2204, 1601, 1281; 1H NMR (400 MHz, CDCl₃) δ ppm: 7.214-7.258 (m, 1H, Thiophene), 7.451-7.495 (m, 1H, Thiophene), 7.817 (s, 1H, Thiophene), 8.208 (s, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 81.25, 116.18, 128.66, 129.06, 132.11, 140.54, 153.58, 165.47; Molecular weight (m/z):191.88 (M+) Molecular formulae: C₈H₅N₃OS: Analysis of elements: Calculated: C- 50.25, H- 2.64, N- 21.98,Obtained: C -50.19, H- 2.62, N- 22.04.

5-Amino-3-(pyridin-4-yl) isoxazole-4-carbonitrile (4i)

Pale red solid; Yield- 86%; M.P- 212-214°C; IR (KBr,cm-1) v: 3430, 3325, 2215, 1601, 1284; ¹H NMR (400 MHz, CDCl₃) δppm: 7.341-7.514(m, 2H, Pyridyl), 8.125 (s, 2H, NH₂), 8.276 (d, J=8.0 Hz, 2H, Pyridyl'); ¹³C NMR (100 MHz, CDCl₃) δppm: 81.24, 114.54, 124.14, 142.06, 150.39, 153.17, 162.58; Molecular weight (m/z): 186.65(M+); Molecular formulae: $C_9H_6N_4O$: Analysis of elements: Calculated: C- 58.06, H -3.25, N -30.09. Found: C 58.00, H 3.27, N 30.15.

RESULTS AND DISCUSSION

Initially, The path of the reaction 5-amino-3phenylisoxazole-4-carbonitrile analogous were obtained from by the reaction mixture of malanonitrile (1mmol), substituted aryl aldehyde (1.2mmol) and hydroxylamine hydrochloride (1mmol) taken in ethanol (30ml) in 50mL RBF and fitted on the magnetic stirrer. The catalytic amount of ceric ammonium sulphate (2mmol) slowly added in a RBF. The reaction mixture vigorously stirring for 5hrs at reflux

The advantages of the synthetic protocol are wide substrate range, easy handling and commercial available inexpensive catalyst. We used a wide variety of compounds to which optimal reaction conditions were applied to synthesize a wide range of benzothiazole as shown by Scheme No.1.

The reaction condition of these derivatives optimized at different catalyst, different amount of the catalyst and different solvent are used. The October – December 149 maximum yield of the compounds obtained in presence of ceric ammonium sulphate (CAS) catalyst than oxidative related catalyst such as AgI, CuI and I_2 whereas different amount of catalyst utilized during the reaction (Table No.1).

During the reaction, the different amount of catalyst was applied completion of the reaction, initially 0.1mmol added in the reaction, traces of product was obtained and gradually increase the amount of catalyst added and slowly increases product obtained. This indicated that 2.0mmol of the CAN was used in these reaction better results was obtained compared to same amount of other catalyzed as shown Table No.2.

Usually, the various solvents used in during this reaction, ethyl alcohol is suitable solvent and perfectly maintained reaction compared to the other solvents such as methanol, DMF and Acetonitrile. An isopropanol is the best solvent utilizing during the reaction, the advantages of the reaction are no pollution effects, easy to work up and there is no wastage of yield as shown Table No.3.

Characterization

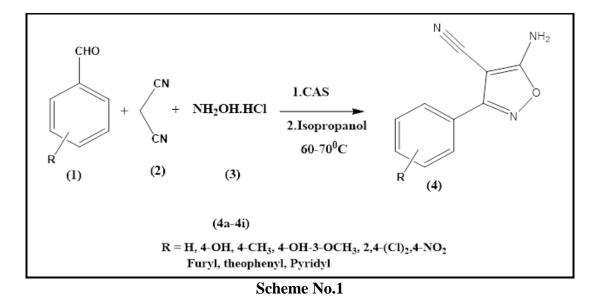
The structure of the titled analogous was performed by the evidence of spectral analysis such as IR, ¹HNMR, ¹³CNMR, LCMS and elemental analysis. The study of IR evidences of desired compound such as 3430 (NH₂) and 2229 (CN). In this study, proton NMR of titled derivatives exhibited by various values of respective groups such as hydroxyl proton is 8.147 δ ppm, furan is 6.874-8.217 δ ppm, Thiophene is 7.214-7.817 δ ppm, pyridine protons 7.3141-8.276 δ ppm, methyl protons 2.258 δ ppm, 9.982 δ ppm of NH₂ protons as well as aromatic protons 7.892-8.254 δ ppm appeared at various range of values.13CNMR of these derivatives appeared at different values.

Biological activity

The results of the above Table No.4 represented that the anti-bacterial activity of derivatives 4b, 4c, 4d mostly electron donating group of compound viz; these derivatives exhibited good active potent while electron withdrawing group of compounds "4e and 4f" exhibited an excellent active potent. The compound 4e and 4f exhibited moderate active potential due to Nitro groups present in the compound. We also observed the Antifungal Activity of compound (4a-4g) exhibited different activity compound 4g, 4h and 4i d showed good "4a" activity and rate of the compound showed low to moderate activity.

Entry	Various catalyst	Time (hrs)	Yield (%)
1	KIO_4	08	68
2	AgI	12	54
3	CuI_2	10	60
4	CAN	05	92
5	TiO ₂	09	45

 Table No.1: Effective the various catalysts for the titled derivatives


Available online: www.uptodateresearchpublication.com

October – December

Krishnarao and Sirisha K. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 11(4), 2023, 147-152.

Table No.2: Different amounts of catalyst in Isopropanol at reflux (4b)											
Entry	Amount of catalyst (%)				Time (hrs) Y	Yield (%)				
1	0.1			10		Traces					
2	1.0			12		35					
3	2.0				05		92				
4	5				08		92				
Table No.3: The effect of solvents for titled derivatives at reflux (4b)											
Entry	Various Solvent			Т	Time (hrs)		Yield (%)				
1	Isopropanol				05		92				
2		MeOH			08		58				
3	A	Acetonitrile			10	61					
4		DMF			10		67				
Table No.4: Antimicrobial activity screening activity synthesized scaffold (4a-4i)											
	Compound Code	*Zone of inhibition in (mm)									
S.No		Bacteria			Fungi		ungi				
		S.aureus	E.coli	S. typhi	B .substills	A. niger	C. albicans				
1	4a	08	05	06	07	05	06				
2	4b	18	18	19	20	15	14				
3	4c	17	19	19	16	16	13				
4	4d	20	17	19	18	16	17				
5	4e	23	22	20	22	17	16				
6	4f	21	22	23	20	17	16				
7	4g	14	15	15	14	08	07				
8	4h	15	17	15	17	10	11				
9	4i	16	09	07	11	08	06				
10	Streptomycin	27	27	25	25	NA	NA				
11	Fluconazole	NA	NA	NA	NA	22	22				
12	DMSO										

Table No.2: Different amounts of catalyst in Isopropanol at reflux (4b)

Available online: www.uptodateresearchpublication.com

October-December

CONCLUSION

In conclusion, this study of titled derivatives has disclosed a novel and convenient one-pot synthesis of 5-amino-3-phenylisoxazole-4-carbonitrile analogues via multi-component reactions. This ceric ammonium sulphate Lews acid catalyst reaction proceeded smoothly in good to excellent yields and offered different other advantages including short simple experimental workup reaction time, procedures, and no toxic by-products. The approach to titled derivatives systems presented herein avoids the use of catalyst, toxic organic solvent. This protocol represents a promising green route for the synthesis of this class of compounds. Further, the antimicrobial activity of the titled derivatives was studied. The derivatives having electron withdrawing groups exhibited excellent active potential.

ACKNOWLEDGEMENT

The Authors are grateful to management of PRISM PG and DG College for providing facility to project work.

CONFLICT OF INTEREST

We declare that we have no conflict of Interest.

BIBLIOGRAPHY

- 1. Barmade M A, Murumkar P R, Sharma M K, Yadav M R. Medicinal chemistry perspective of fused isoxazole derivatives, *Curr Top Med Chem*, 16(26), 2016, 2863-2883.
- 2. Bormann A M, Morrison V A. Review of the pharmacology and clinical studies of micafungin, *Drug Des Dev Ther*, 3, 2009, 295-302.
- 3. Jorgensen J H, Crawford S A, Fiebelkorn K R. Susceptibility of Neisseria meningitidis to 16 antimicrobial agents and characterization of resistance mechanisms affecting some agents, *J Clin Microbiol*, 43(7), 2005, 3162-3171.

- 4. Fiori A T M, Nakahata D H, Corbi P P. Synthesis, crystallographic studies, high resolution mass spectrometric analyses and antibacterial assays of silver (I) complexes with sulfisoxazole and sulfadimethoxine, *Polyhedron*, 121, 2017, 172-179.
- 5. Kreuzer J, Bach N C, Forler D, Sieber S A. Target discovery of acivicin in cancer cells elucidates its mechanism of growth inhibition, *Chem Sci*, 6(1), 2015, 237-245.
- 6. Jin R Y, Sun X H, Liu YF, Long W, Chen B, Shen S Q, Ma H X. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives, *Spectrochimica Acta Part A*, 152, 2016, 226-232.
- Panda S S, Chowdary P V R, Jayashree B S. Synthesis, anti-inflammatory and antibacterial activity of novel indolyl-isoxazoles, *Indian J Pharm Sci*, 71(6), 2009, 684-687.
- Gutierrez M, Amigo J, Fuentes E, Palomo I, Astudillo L. Synthetic isoxazole as antiplatelet agent, *Platelets*, 25(4), 2014, 234-238.
- Ali M A, Ismail R, Choon T S, Yoon Y K, Wei A C, Pandian S, Samy J G, De Clercq E, Pannecouque C. Synthesis and anti-HIV activity of novel 3-substituted phenyl-6, 7dimethoxy-3a, 4-dihydro-3H-indeno [1, 2-c] isoxazole analogues, *Acta Pol Pharm*, 68(3), 2011, 343-348.
- 10. Filali I, Romdhane A, Znati M, Jannet HB, Bouajila J. Synthesis of new harmine isoxazoles and evaluation of their potential anti-Alzheimer, anti-inflammatory and anticancer activities, *Med Chem*, 12(2), 2016, 184-190.
- 11. Abu-Hashem A A, El-Shazly M. Synthesis of new isoxazole-, pyridazine-, pyrimidopyrazines and their antiinflammatory and analgesic activity, *Med Chem*, 14(4), 2018, 356-371.

Please cite this article in press as: Krishnarao and Sirisha K. One pot multicomponent synthesis of a series of 5amino-3-phenylisoxazole-4-carbonitrile employed by lews acid catalyst, *Asian Journal of Research in Chemistry and Pharmaceutical Sciences*, 11(4), 2023, 147-152.

Available online: www.uptodateresearchpublication.com

October – December